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Questions of today

1. There are some generalizations of Schwarz lemma:
a. Let  be holomorphic on  and suppose that  for all  Suppose 

 with . Show that

b. (Schwarz-Pick) Let  be holomorphic. For , show that

2. There are some statements making use of the fact that the Caylay transform

from the upper half plane  to the unit disc .
a. Any entire map  with  bounded below is constant.
b. Let  be a family of function on a region  such that the real parts of  are bounded below, then 

 is normal.
c. (Borel–Carathéodory) Let  be a holomorphic function defined on the closed unit disc 

. Show that, for ,

3. Suppose  is a sequence of holomorphic functions on , and  uniformly on compact subset.

Show that  is holomorphic and  for any positive integral .
4. (Hurwitz) Let  be a region (so it is connected), and  a sequence of nonvanishing holomorphic

functions on . Suppose  uniformly on compact subsets, show that either  or  is nowhere
vanishing.

5. (Vitali) Let  be a locally bounded sequence of holomorphic functions on , and  is a holomorphic
function on . Suppose the set  has a limit point in , show that 
uniformly on compact subsets.

Hints & solutions of today

a. 1. Replace  with , we may assume . Let

Consider the function , we may by induction assume . Finally, consider the function 
 and apply the Schwarz lemma.

b. This is homework 4.
a. 2. By composing with the (together with a tranlation) Caylay transform, the assumption becomes  is

bounded. Then apply Liouville theorem.
b. Composing with the (together with a tranlation)Caylay transform, we may assume the family is

uniformly bounded.
c. As above, composing with a series of conformal map, we translate  to a function  which maps 

to , then apply Schwarz Lemma to .
3. Holomorphicity can be seen by Goursat theorem. Uniform convergence of derivative can be seen by

Cauchy's estimate.
4. Suppose  is  at some point  but  is not identically zero. Find a small disc  aroud  so that  is the

only zero of  in the . Then apply Rouche theorem to  and  for large  to get a contradiction.
5. Suppose on the contrary that there exists a compact subset  that  does not converge uniformly on 

. That is, by replacing  with a subsequence, we may assume there exists  in  such that 
. On the other hand, by passing to a subsequence, we may use Montel

theorem to assume  converges uniformlly on compact subsets to a holomorphic function . Now 
on  so we have  by the identity theorem, we thus get a contradiction.
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