Content

Tutorial 9 ---Chan Ki Fung

BACK

Questions of today

1. There are some generalizations of Schwarz lemma:

a. Let f be holomorphic on $\mathbb D$ and suppose that $|f(z)|\leq M$ for all $z\in\mathbb D$. Suppose $lpha_1,lpha_2,\ldotslpha_n\in\mathbb D$ with $f(z_k)=0$. Show that

$$|f(z)| \leq M \prod_{k=1}^n rac{|z-lpha_k|}{|1-\overline{lpha_k}z|}$$

b. (Schwarz-Pick) Let $f:\mathbb{D} o\mathbb{D}$ be holomorphic. For $a,b\in\mathbb{D}$, show that

$$\left|rac{f(a)-f(b)}{1-\overline{f(a)}f(b)}
ight|\leq \left|rac{a-b}{1-\overline{a}b}
ight|$$

2. There are some statements making use of the fact that the Caylay transform

$$z\mapsto rac{z-i}{z+i}$$

from the upper half plane $\mathbb H$ to the unit disc $\mathbb D$.

- a. Any entire map f with $\operatorname{Re}(f)$ bounded below is constant.
- b. Let \mathcal{F} be a family of function on a region Ω such that the real parts of \mathcal{F} are bounded below, then \mathcal{F} is normal.
- c. (Borel–Carathéodory) Let f be a holomorphic function defined on the closed unit disc $D_R = \{z : |z| \le R\}$. Show that, for r < R,

$$\sup_{|z|\leq r} |f(z)| \leq rac{2r}{R-r} \sup_{|z|\leq R} \mathrm{Re}f + rac{R+r}{R-r}f(0).$$

- 3. Suppose $\{f_n\}$ is a sequence of holomorphic functions on Ω , and $f_n \to f$ uniformly on compact subset. Show that f is holomorphic and $f_n^{(k)} \to f^{(k)}$ for any positive integral k.
- 4. (Hurwitz) Let Ω be a region (so it is connected), and $\{f_n\}$ a sequence of nonvanishing holomorphic functions on Ω . Suppose $f_n \to f$ uniformly on compact subsets, show that either $f \equiv 0$ or f is nowhere vanishing.
- 5. (Vitali) Let $\{f_n\}$ be a locally bounded sequence of holomorphic functions on Ω , and f is a holomorphic function on Ω . Suppose the set $A = \{z \in \Omega : f_n(z) \to f(z)\}$ has a limit point in Ω , show that $f_n \to f$ uniformly on compact subsets.

Hints & solutions of today

1. a. Replace f with f/M, we may assume M=1. Let

$$\phi_lpha(z) = rac{z-lpha}{1-\overlinelpha z}.$$

Consider the function f/ϕ_{lpha_n} , we may by induction assume n=1. Finally, consider the function

- $f\circ \phi_{lpha_1}^{-1}$ and apply the Schwarz lemma.
- b. This is homework 4.
- 2. a. By composing with the (together with a tranlation) Caylay transform, the assumption becomes |f| is bounded. Then apply Liouville theorem.
 - b. Composing with the (together with a tranlation)Caylay transform, we may assume the family is uniformly bounded.
 - c. As above, composing with a series of conformal map, we translate f to a function F which maps \mathbb{D} to \mathbb{D} , then apply Schwarz Lemma to F.
- 3. Holomorphicity can be seen by Goursat theorem. Uniform convergence of derivative can be seen by Cauchy's estimate.
- 4. Suppose f is 0 at some point a but f is not identically zero. Find a small disc D aroud a so that a is the only zero of f in the D. Then apply Rouche theorem to f and f_n for large n to get a contradiction.
- 5. Suppose on the contrary that there exists a compact subset K that f_n does not converge uniformly on K. That is, by replacing f_n with a subsequence, we may assume there exists $\epsilon > 0$ in K such that $\sup ||f(a_n) f_n(a_n)||_K \ge \epsilon$. On the other hand, by passing to a subsequence, we may use Montel theorem to assume f_n converges uniformly on compact subsets to a holomorphic function g. Now g = f on A so we have $f \equiv g$ by the identity theorem, we thus get a contradiction.

